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RESEARCH MEMORANDUM

INFLUENCE OF THE BODY FLOW FIELD ON THE ZERO-LIFT -
WAVE DRAG OF WING-BODY COMBINATIONS MODIFIED IN
ACCORDANCE WITH THE TRANSONIC AREA RULE

By Willliem A. Page
SUMMARY

An anelysis based upon an é.pproxima.tion to the transonic smell-
disturbance theory 1s presented which shows an influence of the loeal
Mach number field of the body on the zero-lift wave drag of wing-body
cambinations modifled i1n accordence with the tramsonic ares rule. The
analysis indicates that for a restricted class of indented wing-body
cambinations the zero-l1lift weve drag approximastes that of the corre-
sponding equivalent body when & Mach mumber of 1 occurs locally at the
wing Instead of in the free stream. Caomparisons are made between the
snalysis and avalilsble experimental date. The comparisons suggest en
explanation for some of the enamalous results obtalned by various inves-
tigators from tests of lndented wing-body cambinstions.

INTRODUCTTION

The transonic area rule as first demonstrated by Whitcamb (ref. 1) .
has led to the procedure of ilndenting the bodles of wing-body combina-
tions in the region of the wing In order to reduce the drag rise at
sonlc speed to the value for the body alone. The results of applying
body indentetions, as reported by Whitcomb and others, have not been
entirely consistent. In some cases a drag rise at sonic speed equal to
that of the body alone (the so-called equivalent body of revolution) has
been obtalned. In other cases the drag rise has been higher thaen that
of the equivalent body.

Some reessons for these inconslistencles have been advanced. Sprelter
has shown in reference 2, by an examination of experimental date on the
basls of the transonic similarity rules, thet if the similsrity parameter
for aspect ratio and thickness, A(t/c)*2, for a wing becomes too large,
the zero-1ift dreg rise at sonic speed is no longer related by the
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transonic area rule to the drag rise of a simlilar wing of lower aspect
ratio and thickness (i.e., lower velue of A(t/c)¥/3). As a result, it
can be expected thet a similar limit exists on A(t/e)Y3 for wings
mounted either on indented or unindented bodies above which drag equiv-
alence with the respective equivalent body would not be obtalned.
Whitcomb also recognized that same limitation should exist since the
rule specifies that the wings must be "thin" and of "low espect ratio.”
It has also be suggested in reference 3 that flow separation in the
region of the body indentetion, caused by excessive body surface slopes,
would chenge the effective boundery of the configuration and thereby
prevent the atteimment of equivalent body drag rilse.

In addition to the foregolng two possible sources of a higher drag
rise at transonic speeds, an as yet unexplored explenation is offered
bere, namely, the influence on the drag of the wing of the local Mach
number field induced by the body. It was reasoned that the drag of the
wing and indentation parts of the configuration would depend primerily
upon the value of the local Mach number in the vieinity of the wing
instead of the free~stream Mach number. It is the purpose of this paper
to investigate the influence on the zero-lift wave drag of ilndented wing-
body combinations of the local Mach number field induced by the body and,
by comparisons of the analytical results with experiment, to indicate the
extent to which this influence accounts for some of the aforementioned
ancmalous results of epplying the transonic ares rule.

SYMBOLS -
A aspect ratlo
b wing span
c wing-root chord
P~Poo
ssure coefflcient, ———= -
cp pre FJ qm
Q averege value of the pressure coefficient in the region R
(defined below)
Do’
Cpo’ zero-11ft drag coefficient, o . N _
Do
Cpo zero-1lift weve-drag coefficient,
OBy
Do zero-11ft dreg

H
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X,Y,z

BZ

> R

5?6

zero-1lift wave drsg

(7+4L)M,2
Us

body length

free-stream Mach number

local Mech number

M, - M,

average value of AM in the region R (defined below)

free-stream dynamic pressure

small reglon of the equivalent body flow fileld corresponding
to the region occupied by the wing In the complete configura-
tion flow fleld

body radius as a function of x

plan-form area of wlng, including part inside body

surface area of configuration

wing thickness

wing meximum thickness

free-stream veloclty

longitudinal, leteral, and normal coardinate system with the
x axls corresponding to the wind axis

%2 - l

B2 + kzpr

ratio of specific heats
surface slope

perturbation potential

perturbation velocity
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T averege velue of @, in the region R (defined above)
Subscripts

B equivalent body of revolution

Cc camplete configuration, wing-body combinstion modified in

accordance with the transonic ares rule

P perturbation shape, the wing and the area-rule body indentation
on an Infinite cylindrical body

X,¥,2 derivative with respect to x, y, or =
ANAT.YSIS
General Method

The basic problém under consideration is to investigate the influ-
ence on the zero-lift wave drag of an indented wing-body combination of
the local Mach number fleld induced by the body. To study this problem
analytically 1t is necessary to use the transonic small-disturbence
theory, since any simpler theory is incepsble of predicting local veloc
ity field effects., The enalysis consists of two parts: (l) the deter-
mination of an approximate trensonic veloecity potentisl sbout the con-
figuration and (2) the computetion of the zero-lift wave drag from
knowledge of this velocity potential,

Since the transonic emell-disturbsnce equetion 1s nonlinear, the
application of the theory is extremely difficult. Methods for finding
solutions for three-dimensional shapes are not availsable. Accordingly,
simplifying asssumptions are introduced and only an approximation to the
transonic potential is found. For example, this approach is used in
references It end 5 where the zero-lift wave drag of slender three-

dimensionsl shapes 1s studled at transonic speeds by use of an approxi-

mation based upon slenderness, .
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Derivation of the Veloeity Potential

Consider the wlng-body combination modified

in asccordance with the transonlic eres rule shown “’_c_
as the complete configuration in sketch (a). The — ~=—_ =
problem is to f£ind en approximation to the tran- v
sonlic potential ¢@p ebout this configuration.

Since the transonic area rule states that the drag Compiets configuration
rise depends primerlly upon the longitudinel dis- f&.

tribution of ares and indlicates that a wing-body

cambination will have & drag rise equal to that o~ I
of the equivalent body at sonlc speed, Pg, the

potential sbout the complete configuration was Equivalent body

related to o@p, the potentlal sbout the equiva-

lent body (the second configuration shown on dp_
sketeh (a)) by the equation /\
L )
% = P + Pp (2) U/
Psrturbation configuration
where can be consldered as a difference
perturbation potential. The purpose of the Sketch (a)

remainder of this section will be to show that

under certaln conditions the perturbation potential, , can be closely
approximated by the linear-theory potentisl sbout the rd configura-
tion of sketch (&). This perturbation configuration 1s an area-rule
Indented wling-body comblnatlon resembling the camplete configurstion,
but with an infinite cylindrical body.

The transonic small-disturbance equation expressed in terms of a
perturbation potentlal can be written in the form

2
(B® + kpy)Pyy = Oyy + Pgg 3 k=£%— (2)

vhere x,y, and 2 are a longitudinal, lateral, end normal coordinate
system with the x axis along the body center line colnciding with the
wind exis. ¥or & derivation and discussion of the applicabllity of this
equation see reference 6 pages 327-335. Substituting the value of Pa
from equation (1) in equa.tion (2) gives

(8% + ko, + kop, ) (9p,, + Opy,) = Op, + Ppyy + OBy, + PRy, (3)

cpf by itself is & solution to equa.tion (2), the subtraction of
equa on (2) from equation (3) ylelds

L d
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(8% + kop Jopyy + W0 (Ppy + Pmie) = Ppyy + O, (&)
_nyon R A small region, R, of the equivalent body
L S £low field (sketch (b)) is now comsidered which
!' ) —— corresponds to the reglon about the camplete con-
— v ] figuration occupied by the wing. In this region
N/ the assumption |q>Bx - '¢B—x|<<|_"q>3x| is made regarding
Sketeh (b) the value of PRy The symbol 'cpTx represents the

average value of PBy in the reglon R. It ise

easily recognized that the sbove relation is equivalent to stating that
the local Mech number field ebout a body of revolution decays slowly in
the redisl direction at transonic speeds and that over the portion of
the body length containing the wing the veriation in is small, A
survey sbout a representative smooth slender body of revolution , made in
the Ames 2- by 2-foot transonic wind tunmnel, verified the existence of
such a region and indicated that this assumption was reasonable. The
results of the survey are presented in Appendix A,

It is further assumed that ‘PB%|<<| in the region R. Thise
statement is qualitatively relat the previous gssumption, for if
varles but & small emount, must be small, Appendix A also

Presents a comparison between theory and experiment to show that for
the test configurstion PByx 18 small compared with PPyx*

With the introduetion of these approximations in equation (4), there
is obteined for ¢p in the region R

(B% + ¥Pp, + kop, )Ry, = Py, + Ppy, (5)
ar
(8, + kpp,)Pp,, = ®p, + Opy, (6)
where
= B2 + Kpg_ (7)

Since B2 4 ko, equals M-Lz - 1 to the order of accuracy retained in
this enaslysis, the symbol B, 1is recognized as characterizing the
everage local Mach number of the flow fileld about the equivalent body
in the region of the wing. Moreover, inspection of equation (6) indi-
cates that, in the region R, ¢p satisfies the transonic small-
d.isturba.nce equation with 'bhe free-stream Mach number defined as the
average of the local Mach number in R for the equivalent body alone.
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In addition to satisfylng equation (6) in the region R end
equation (%) outside R, @p must satisfy conditions determined from
the boundary condltions satisflied by Pc and @g. In the region of
the wing o¢p must satlsfy the same boundery conditions as does Pc.
For a wing-body combination which 1s symmetricel with respect to the
horizontal plane, this condition i1s given by

Sop

¥z

= TAg(x,y) _ (8)

Z=0

where U, 18 the free-stream velocity and )\c(x,y) is the wing surface
slope.

To obtaln the boundary condition satisfied by ¢p near the body
surface 1s more camplicated. For e clrcular body, the initial boundery
condlitions are

Pc
— = Uphg(x) (9)
ar r=rc(x)
and
?} = g (x) (20)
rerp(x)

where rp(x) end rp(x) define the body radiil of the two configurations.
In the region of the body indentation, rp(x) 1s not the same as rgp(x).
However, for simplicity, it will be assumed here that neither rp(x) nor
rp(x) differs appreciebly from the average value of rp(x) in this
region, Furthermore, since Ay(x) 1s equal to Ag(x) at other positions
on the body outside the indentation, the boundesry conditlon satisfied by
@p 18 closely approximated by

o
or

LR [2c00) - 2| (11)

where Tp 1s the average body redius in the region of the indentation.
This equation indlcates that the boundary cordition approximately satis-
fied by ¢@p mnear the body surface is described by an indented infinite
cylindrical body. Altogether, equations (8) and (11) indicate that the
boundary conditions which apply to ¢p are those of an area-rule
indented wing-body combination resembling the complete configuratiom, but
with an infinite cylindrical body rether then a pointed finite body.

AR
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At this point in the anelysis, it can be sald that socme progress has
been made since the equations and boundary conditions approximately satis-
fied by ¢p have been determined. However, the problem is still non-
linear, snd not presently solvable, since equation. (6) 18 in the form of
the transonic small-disturbance equation. It can now be demonstrated thet
the perturbation potential, @p, can be linearized, a step which greatly
facilitates the determination of solutions. In reference T it is shown
that for a configuration described by an eqidl number of sources and sinks
in each plane perpendicular to the wind axis, the velocity potential as
calculated by linear theory remains finite as the Mach number approaches
end becomes 1. In perticuler, @y remsins small compared with U, except,
for instance, for singularities at the leading edge of a wing, Similar
conditions apply to the perturbaetion configuration, P, if the approximation
of the proportionelity of source strength ta.sgurface slope 1s accepted.
This approximation is valid for wing-body catbinetions at or near a Mach
number of 1 (see ref. 8).

The preceding srguments have indiceted that equation (6) for the
perturbation potentisl, ¢p, can be reduced to linearized form and still
produce finite and small values for the perturbation veloclties at sonic
gpeed., & result which hes sn interestlng consequence, As the zero-lift.
wave dreg will be zero for this configuration at sonic speed (ref. 7),
it can be sald that a special class of thickness solutions exists which
is valid at this Mach number. These solutions predict the transonic area
rule for a configuration that cen be described by an equal number of
sources and sinks in planes perpendicular to the x axis (i.e., for con-
flgurations where the derivative of the ares distribution with respect to
x 18 zero everywhere),

Within the fremework of the sbove approximations, the velocity poten-
tlal at transonic speeds of wing-body combinations modiflied in accordance
with the transonic area rule,for which the locel Masch number field about
the equlvalent body is spproximately constant in the corresponding region
occupled by the wing, cen be determined as follows:

1, The velocity potential about the wing-body combination in the
region occupled by the wing is approximeted by the sum of two parts;
namely, (a) the velocity potential sbout the equivalent body alone, and
(b) the velocity potential about.the wing and, en infinite cylindrical _
body having the same indentation volume as the actual body.

2. The velocity potentisl of the equivalent body is calculated by
transonic emell-disturbance theory. The velocity potential of the wing
and indented infinite cylindrical body is celculeted by linear theory,
but with the Mach number used in the calculations determined by the
aversge local Mach number of the equivelent body in the corresponding
region occupied by the wing.
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Calculation of the Zero-Iift Wave Drag
The zero-lift wave drag of the complete configuration is given by
8

integrated over the exposed plan-form sres of the wling and the surface
of the indented body. Using the relationship

R 3

and equations (1), (11), and (12) gives

RN R NE o)

Ue

- eqlqu)PY - 2q)'BZcpPZ as (11,_)

U2 U2 8

or

Doc = qwf [?\BCPB + KPGPB + XBCPP + )\PCPP + O‘P + Mg ) (_ &Z:Py_ UEB:ZPZ>:IG'SS
Sg
(15)

An examinstion of the various terms of equation (15) follows: The
first term on the right-hand side of equation (15) represents the drag
of the equivalent body; it is the only term "predicted” by the tramsonic
aree rule at a free-stream Mach mmber of 1. The fourth term of equa-
tion (15) represents the dreg of the wing and area-rule body indentation
on an Infinite cylinder, It has & value of O for a local Mach number
of 1. At a free-streem Mach number of 1 its value depends, of course,
upon the amount of increase of the locsl Mach number sbout the equivalent
body and the shspe and size of the wing.

- The second term represents the action of the egquivalent body pres-

sure field on the indented wing-body cambination having the infinite
cylindrical body. This term can contribute to the drag only within the

L e
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region R since Ap 18 zero elsewhere. Within this region it has been
assumed that the variations in ?p, &re smell or, correspondingly, the
variations in GPB are small. The second term can therefore be written.
as .

-/;JP%BdSB =_/1;7\P-CP_BG'SS +'./1;7\P(C;B -Ep: dsg | (26)

The first term on the right-hand side of this equation contributes no
dreg since a constent pressure field sascting on the perturbation shape

causes no drag force., The second term is small compared with j; RBCde.SB s
. 8

the term representing the drag of the equivalent body, since Ap in R
is of the order of megnitude of Ag elsevhere on the body and GP.B - C':E
in R 1s small compsred with CPB

The - third term of equation (15) represents the action of the pressure
field of the wing-body combination having the infinite cylindrical body on
the equivalent body. Within the region R, this term can be assumed small
compared with the term representing the drag of the equivalent body, since
CpP is the same order of megnitude as CPB end for the smooth slender

equivalent bodles considered here Ag within' R would be small compared’
with Ap. Evaluation of the possible remaining drag contribution from the
third term of equation (15) in the reglon outside R is difficult to

essess becguse @p no longer satisfles a simple equation as it does in “R. -

However, 1f the linear solution to ¢p 1s extended aelong the body surface
(one can imagine the region R growing in slze, or conversely, the wings
becoming emaller), it is found that ¢p, (end also Cp,) rapidly decays

toward zero. This is easlly seen, for the potential downstream of an equal
number of sources and sinks grouped together (i.e. , the wing and the area-
rule body indentation) resembles more and more closely the potential
directly behind a doublet for which @y = O. In feect, at a local Mach
number of 1, @gp, would be identically zero along the cylindrical body
surface. As C%P outside R can therefore.be expected to be small com-
pered with Cp_, the drag contribution from the third term of equetion (15)

can be expected to be small compared with the drag of the equivalent body.

The last term of equation (15) can be disposed of with reasoning
similer to the foregoing when it is noted that, within the region R,
and Pg, &re small since the body slopes for smooth slender bodies

' have small velues in this region, and outside the region R, the magnitude

of q’Py and Pp, must be close to zero as cen be reasoned from the boundary-

condition requirements given by equation (11).
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Fram the foregoing considerations, the total zero-11ft wave drag of
the complete configuration can be approximated by

Dog(Me) = Dop (M) + Dop(My) - (17

where DOB(MOO) is the zero-1ift wave drag of the equivalent body alone and
DOP(MZ) 1s the zero-lift wave dreg of the perturbation configuration (the

indented wing-body combination having the infinite cylindrical body). The
zero-11ft wave drag of the ‘equivalent body, Dg_(M,), must be calculated
from the transonic smell-disturbance theory a.to%he free-streem Mach mumber,
vhereas DOP(MT.) can be calculated by means of the linear theory but at a

Mech number given by the aversge of the local Mach number field ebout the
equivelent body in the reglon of the wing. Since D°P 18 zero in a sonile

flow field and increases as the Mach mumber 1s increased, it is clear that
equation (17) indicates that the complete configuration cen have greater
zero-11ft wave drag than its equivalent body at a free-streasm Mach nunber
of 1. This Increase in drag can be. attributed to what might be called a
Mech number shift effect on the drag of the wing and area-rule indentation
parts of the configuration. It must elso be remembered that equation (17)
hes been derived under relatively restrictive conditioms; that 1s, the wing
is amell relative to the body size and located in a reglon where the corre-
sponding equlivelent body flow field ls approximately uniform.

It should be mentlioned that as the Mach mumber 1s increased somewhat
sbove unlty, the transonic enalysis presented herein breaks down and linear
theory becomes more directly appliceble. In that case, equation (17) can
be shown to be accurate when both D°B and D°P are obtained dlrectly from

linear theory at the stream Mech number, 1f the equivalent body is & so-
called minimum drag shape.

COMPARISON OF PREDICTED RESULTS WITH AVAITABLE EXPERTMENTAT. DATA

It 1s the intent of this sectlion to determine whether the theoretical
prediction of the previous section is 1n accord with experiment, and thus
to see 1f the analysis accounts for the eanomelous results from tests on
indented wing-body combinations. A direct comparison between the predicted
value from equetion (17) and the experimental value of the zero-1lift wave
dreg of the complete configuration cannot be made since solutions to the
transonic small-disturbance equation for bodies of revolution are not
available elther for the drag, or the local Mach number field about the
body. Determination of the usefulness of equation 517) cen be made,
however, by comparing the predicted value of CDOP the zero-lift wave

- BRI
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dreg of the wing and indentation parts of the configurstion) with the
experimentael value of CDOP_ end obtaining the locel Mach number field

sbout the equivalent body either directly from experiment, or from linear-
theory calculations. ' '

Experimental values of CD°P » &8 obtained from avalleble experiments

on indented wing-body combinations, will be compared with linear-theory
values of Cp., with and without the correction for the shift in Mach

mmber caused by the velocity fleld of the body. A description of the
means of evaluating the quentlitlies necessary for the comparison between
experiment and theory follows:

The linear-theory values for Cp were obtained in most cases from

the literature; the actual source will be given subsequently on the figures

which show the comparisons. The value for the averasge local Mach number

about the equivalent body in the region occupied by the wing was estimsted

in most cases from experiment, as described in Appendix B. A summery of

the results cobtained is given in the table of Appendix B. The experimental

drag of the wing and indentation parts of the configuration was cbtalned by ,
subtra¢ting the experimental drag of the equivelent body from the experi- .
mental drag of the complete configuration. The zero-lift wave drag of the _
wing and Indentation, cDoP ; was estimated in turn by comsidering it equal »

to the zero-lift drag rise, which is obtained by subtracting the subsonic
drag level from the transonic and supersonic dreg values. The quantity
subtracted was usually the zero-lift drag at the lowest subsonic Mach
number at which dete were avallsble. This procedure is equivalent to
assuming that the change in friction dreg ‘over the Mach number renge of
interest 1s negliglble and that no serious amount of flow separation tekes
place. . '

Flgure 1 shows the comparisons between measured characteristics for
wing-body combinations modified in accordence wlth the transonic ares rule,
and the characteristics estimated by the approximate theory as developed in
the preceding section of this report. The upper half of each part of the
figure shows the experimental data as obtained from the indlcated refer-
ences. In the lower half of the figure 1s shown the experimental value of
Cp as determined from the data in the upper half of the figure. This

estimate of zero-lift weve drag of the wing and indentation baesed upon the
experimental data is compared wlth the lineer-theory velue of Cp

and the modified value of Cp,. , which is shifted in Mech number ?&ue to

the influence of the local Mach number field induced by the body) by the

smounts indicated in the table glven in Appendix B. Figures 1l(a), (e), .

and (f) definitely show improved agreement between experiment and theory
et transonic .speeds when the influence of the local Mach number field of

IR
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the body 1s taken into account. Figures 1(b), (c), and (d) represent
cases Where the influence of the locel Mach mumber field of the body
should be negligible, since there was little increase in the local Mach
number above the free-stream value st the wing locatlion for the bodies

of these examples. Figures 1(b) and (c) show that the experimentael value
of Cp is near zero at a free-stream Mach mumber of 1, as was expected

for these cases. The large increase in the experimental value of Cp
(e.g., fig. 1(d)) prior to sonic speed is not accounted for by the present
theory.

It seems that consideration of the local Mach number field about the
equivalent body explains why some indented wing-body ccombinations exhibit
greater zero-lift drag rise at a free-stream Mach number of 1 then the
equivelent body. One of the requirements which appears to be necessary
for the sonic drag rise to be the seme 1s for the equivalent body to be
80 shaped &8s to assure that the local Mach number in the corresponding
reglon oceupled by the wing is spproximstely the free-stream value (as
it is for a body with a sufficiently long cylindrical section or for a
very slender body).

The preceding analysis or the experimentel comperisons shown do not
glve any direct information regarding the largest aspect ratio and thick-
ness of a wing for which the concept of the transonic area rule can be
expected to be valid (ref. 2), The possibility of finding any information
on this subject from the present analysis was lost when equation (7) for
the perturbation potentlal, ¢p, was linearized. A systematic series of
experimental tests or the appropriate solution to the transonic small-
disturbance equation would be necessary for this purpose.

CONCLUDING REMARKS

An spproximate tramnsonic analysis, based on relatively restrictive
assumptions, has shown that, for indented wing-body combinations for
vwhich the wing 1s small relative to the body size and for which the local
Mach number field about the equivalent body 1s spproximately constent in
the corresponding region occupled by the wing, the zero-lift weve drag is
approximated by the sum of two parts: (1) the zero-1lift wave drag of the
equivelent body, and (2) the zero-1ift wave drag of the wing and an
infinite cylindrical body heving the same indentation volume as the actual
body. The dreg of the wing and indented infinite cylindricel body depends
on the average local Mach mumber of the equivalent body in the region
occupled by the wing.
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Comparisons of the epproximate analysis with avallseble experimental
data have been made by consldering only the_ zero-lift weve drag of the
wing and indentation paerts of the configuration. It wes shown that agree-
ment between theory and experiment could be improved by taking into con-
sideration the local Mach number field of the equivalent body. This
result confirmed the reasoning thet the zero-1ift drag rise of a wing-body
combination modified in accordance wlth the transonic area rule must exceed
that of the equivalent body at a free-stream Mach number of 1 if there is
an appreclsble increese in the local Mach number field ebout the equivalent
body. The result of the investligation suggests that dreg-rise egulivalence
occurs when a Mach number of 1 occurs locally at the wing instead of in the
free stream.

Ames Aeronsutical Laboratory :
Natlonal Advisory Committee for Aeronautics -
Moffett Field, Calif., Nov. 10, 1955
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APPENDIX A

SURVEY OF THE VELOCITY FIELD ABOUT A BODY

OF REVOLUTION AT TRANSONIC SPEEDS )

It 1s the purpose of this section to demonstrate experimentally two
features of the flow fleld sbout a smooth slender body of revolution at
transonic speeds; namely, (1) variations in the locel Mach number field
are small in the region occupied by a typleal wing, and (2) the value of
Pyxx I1n this region is small compared to the theoretical wvalue of )
for a wing and area-rule body indentation. To obtain this information =
survey of the flow about a body of revolution was msde in the Ames 2- by
2-foot transonic wind tunnel. The body used was the seme as the body of
reference 9 and is also the same body as in figure 1(a) of this report.
A statlc-pressure survey was made with e moveble, cylindrical axial tube
of l/2-1nch dlasmeter extending through the test section parallel to the
wind axis of the wind tunnel.

The results of the pressure survey at Mach numbers from 0.98 to 1.10
are shown in figure 2 in the form of contours of the increase in local
Mach number over the free-streem value, The contours shown are the 4if-
ference between the survey about the body of revolution and an empty-
tunnel survey. The accuracy of the contours 1s the order of 0.01 Mach
nunber, Inspection of the figure shows that over the plan form of the
elliptical wing (the dashed lines on the figure) the variations in the
local Mach number are smell. The varlaetions in this reglion become largexr
as the Mach number 1s increased to 1.10,

To determine if the value of @, Tfor the body flow field is small
campared with values for a typlical wing and area-rule indentation, the
experimental values (obtalned by using Cp = -{(2¢4/U,) to relste the
pressure coefficient and the veloelty potential) are compared in figure 3
with theoretlicel values for the wing and area-rule body indentation of
reference 9 at a Mach mumber of 1. The figure shows that @, for the
body alone 1s negligible compared with the values for the wing and inden-
tation., The theoretlcal values were determined by simulating the wing
with a source-sink sheet (the planar approximstion) and the area-rule
body indentation by & line of sinks (and sources) along the center line
of the body. Under these conditions, where an equal mumber of sources
and sinks exists in every plane normal to the x axis, the two-
dimensional equatlion

Pyy + Pgg = O (A1)



16 . OOV ITIREREY NACA RM A55K10

applies (ref. 7). The potential is therefore given by

o(y,2;x) = g‘;’;{j_:iﬂ?\(h,x)ln[(y yu)2 + zz]

a(x
In(y2 + 22) '»[a(x) MYJ.:I)GYJ.] (a2)

vwhere a(x) defines the edge of the plan form. For the elliptic plan=-form
wing with clrculer-arc section of reference 9 where

-2 - o =

A(yi1,x) 1s glven by

Ayasx) = A(x) = - T:TO:F : (k)

The second derivative of the potentlal 1s found to be

e 2 2 [-42) [-GF@Y]
T fc,ai"’ - () (&)

U, %
2(35) ”

- () ()
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APPENDIX B

DETERMINATTION OF THE LOCAL MACH NUMBER ABOUT THE EQUIVALENT

BODIES OF REVOLUTION OF FIGURE 1

The average locel Mech number about the equlvalent bodles in the
corresponding reglon occupled by the wing was estimated in most of the
examples of figure 1 by reference to experimental pressure distributions.
First, the aversge pressure coefficlent in the reglon occupied by the
wing was determined. (The decay of the pressure field of the body over
the span of the wing was ignored in those cases in which it was not
known.) Second ; the aversge locsl Mach number In this reglon wes found

from. the relation
~7/2
1 4+ 0.22\
Cp = 0.71M°°§ [ (1 : o.am,:a) B :| (21)

In figure 1(a) the aversge local Mach number was estimated from the
pressure survey presented in Appendix A. For figures 1(b), (e¢), and (&)
the averege local Mach number was estimated fram pressure-distributlion
measurements on the equivalent body from reference 15. For figures 1l(e)
and (f) a linear-theory calculation at a Mach number of 1.05 , based on
the method of reference 16, was used, since an experimental pressure
distribution was not avalleble. It was assumed thet the pressure dis-
tribution so obtalned would be representative of values over the Mach
number range of 1.00 to 1.10. To show that this wes & reasonable
assumption, a comparison between linear theory end the experimental
pressure distributions for all the bodies (fig. 1) where such data were
availeble is glven in figure 4. It 1s to be noted in part (a) of
Pigure 4t that the pressure distribution was tsken off the surfece of
the body by the indicated amount; whereas the flagged symbols denote
measurements on the surface of the body. Here, the lineear-theory method
of reference 16 tends to overestimate the actual pressure distribution
in the region of the wing. The essential feature of Ffigure 4(b) is the
collepse of the pressure coeffliclent back to the free-stream value over
the cylindrical portion of the body. Except for the anamalous beheavior
of the experlimental pressure distribution at a Mach number of 1.03 com-
pared with the distributions at Mach numbers of 1.00 and 1.10, the pre-
diction of the theory is falrly accurate. In summery, while the accuracy
of the predictions of the linear-theory method of reference 16 in this
Mach number range has been shown to be samewhat varieble, it can be
expected thet the theory will serve to glve a rough estimate of the
pressure distributlon on bodles for which no experimental data are
available (figs. 1(e) and (£)).
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A summarlzing teble showing the values of the average local Mach
number used in the calculetion of C,‘DOP for figure 1 is given below:

Body in |M; for

gurelfigurehl\t[,o=l.00 Source

Ea) (a) 1.025 |Pressure survey (Appendix A)
b) (b) 1.00 Pressure distribution (ref. 15)
(e) () 1.00 Do.

(&) (v) 1.00 Do.

(e) (c) 1.04 ILinear theory (ref. 16)

(£) (e) 1.04 Do.
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Figure 1,- Basic data and a comparison between experiment and theory for the zero-lift wave drag
l of the wing and area-rule body indentation.
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r,hches

(a) ¥, = 0.98
sl
(b) M, = 1.00
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(a) M, = 1.05

(e) My = 1.10

X, inches

Figure 2.- Experipental local Mach number distribution ebout a Sears-
Haack-Karmen ogive body of revolution at transonic Mach numbers.

LN



Experiment
——0~-~ Equivalent body-olone at
survey sfafion
—  Theory
Wing plus area rule indentation
at survey station
$xx¢ o Q- -=
B.L.L A 10—
Un
- ] ] I ] | | I I | |
o 2 4 5 8 10
f

/—-

Figure 3.~ Experimentel body alome

and theoretleal PPyx
rule body Indentetion at M, = 1.0.

for ap elliptic wing and area

OTHESY WY VOVN

4]



26 w NACA RM A55K10

(a) Equivelent body /
of figure 1(a). —_ . —

/" Wing locations
(v) Equivalent bo /

of figure 1(b), (3, / /

and (d). —_ 1
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(e) Equivalent body of .
~—

figure 1(e) and (£). —_—

Figure 4.~ Experimental and theoretical pressure distributions aboutb
the equlvelent bodles at trensonic Mach numbers.
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